ARCHITECTURAL PERSPECTIVES

Information view
Cross

cutting

concern o .
Functional view

SECURITY :
Deployment view

PERSPECTIVE X

VIEWPOINT A VIEWPOINT B

1. PRIMARY PERSPECTIVE CATALOG

Security — access to system resources

Performance and scalability — meeting performance and increased load satisfactorily
Availability and resilience — ensuring systems availability and coping with errors when they occur
Evolution — ensuring that the system can cope with likely changes

2. OTHER PERSPECTIVES

Accessibility — system to be used by people with disabilities

Development resource — system to be built within known constraints (cost, time, quality, people)
Internationalization — ability to be used independently by any language, culture or country
Location — ability to overcome problems brought by physical location between system’s components
Regulation — ability to conform to regulations and laws

Usability — the ease with which people can interact with system effectively

PERSPECTIVES
Security Performance Availability Evolution
©
§ Concurrency
= Performance
b (shared resources,
8’ blocking, queuing,
coordination)
a /
&
5 4«
(]
3
o o
=
w
> c
L
e
©
£
2 A
£
©
c
)
< \
=
=1
(I

Information
Security
(access control,
access classes,
object-level
security)

Functional
Evolution
(extension points, flexible
interfaces, meta-
approaches)

2. SECURITY perspective applicability to views

Context Identify external connections and threats to them

Functional Identify security critical functional elements. Actual

Information What data needs to be protected

Concurrency Indicate isolation on process level

Development Guidelines, constraints and security policies for
developers to be aware of

Deployment Can contain security oriented hardware or software
components

Operational Definition of security principles and actions for clear

functional scope can be impacted by security needs

responsibilities

1. CONCERNS OF SECURITY PERSPECTIVE

Confidentiality is normally defined as limiting the disclosure of secrets to those who are
legitimately allowed to access them.
o Can be achieved using access control.
Integrity is a guarantee that information cannot be changed undetectably
o Can be achieved by “signing” data cryptographically.
Availability — ensuring that potential attackers of your system cannot block its availability with
denial-of-service attacks
Accountability is the means of ensuring that every action can be unambiguously traced back to the
principal who performed it
o Can be achieved by auditing
Security treats
o Common types of security treats:
= Physical layer attacks (Row hammer)
® Unauthorized access and use (Pharming, spear phishing)
= Software theft (License, software copy, code copy)
= Information theft (Trojan, keylogging, phishing)
= System failure (SQL Injection, CSRF)
= Denial of service (Distributed denial of service attacks, slow-loris)
= Software misuse (Unintentional software misuse T
to put system in faulted state or any above) il e
Resource guarding — resources are guarded by policies /
which enforces technical mechanisms for principles to /

access resources .
Security mechanism
o Concerns and solutions for those security
mechanism concerns: \\

= Authentication, authorization, auditing (SSO,

Pass/username)
= Information privacy and integrity (SSL/TLS) o T /
= Claiming of who you are not - Non-repudiation (Cryptography, message signing)
= System availability (resilience to DOS attacks)
= Security monitoring (Intrusion/misuse detection)

3. PERFORMANCE & SCALABILITY perspective applicability to views

Functional

Information

Concurrency

Development
Deployment

Operational

|dentify and consolidate performance sensitive
architectural elements

Might require to consider replication or distribution of
data to support goals

Performance and scalability can be tightly coupled with
the architectural decisions in this view

Guidelines and principles to support goals
Clusters, grids, high-performance hardware etc.

Highlight needs for performance monitoring and
management capabilities

4. AVAILABILITY & RESILIENCE perspective applicability to views

Functional Functional changes might be required to support
different operation modes (occasionally connected
client)

Information Set of processes and systems for backup and recovery

Concurrency Hardware replication or failover might affect

concurrency model

Development Design constraints via principles (all services should be
startable, pausable and stoppable)

Deployment Fault-tolerant prod environment, special software for
clustering
Operational Processes and mechanisms to identify and recover from
|

| problems

5. EVOLUTION perspective applicability to views

Functional If the evolution required is significant, the functional
structure will need to reflect this

Information If information evolution is needed, a flexible
information model will be required

Concurrency Evolutionary needs may dictate particular element
packaging or some constraints on the concurrency
structure (e.g., that it must be very simple)

Development Evolution requirements may have a significant impact on
the development environment that needs to be defined
(e.g., enforcing portability guidelines)

Deployment Rarely significant impact

Operational Rarely significant impact

1. CONCERNS OF EVOLUTION PERSPECTIVE

* Product management (dedicated role)

» Magnitude of change (good software design, low coupling)

» Dimensions of change (software, hardware)

* Likelihood of change (requirement ambiguity)

* Timescale for change (how soon?)

* When to pay for change (ASAP or ALAP)

* Development complexity (meaningful design for extensibility)
* Preservation of knowledge (documentation, people)

* Reliability of changes (automated tests)

2. WHAT INVOKES CHANGE IN EVOLUTION PERSPECTIVE
*Misunderstood requirements

*Business change

*End user requirements

*Flaws of design or poor flexibility

3. DESIGN TACTICS FOR EVOLUTION PERSPECTIVE
*Separation of concerns

*Encapsulation

*Single point of definition — DRY (Do not Repeat Yourself)
*Functional cohesion

*Low coupling

*Abstract common services

*Abstraction and layering

*Generalization patterns

Inversion of control / dependency injection

eInterface segregation

